List of topics
Khai giảng lớp học TF 06
Sách bổ trợ cho lớp học
Giới thiệu về Học máy/Học sâu
Mô hình hồi quy tuyến tính
Hồi quy tuyến tính với Tensorflow
Mô hình hồi quy tuyến tính với dữ liệu nhiều cột
Ôn tập hồi quy tuyến tính với nhiều cột
Stochastic Gradient Descent - SGD
Bài toán phân loại nhị phân
Ôn tập hồi quy Logistic
Bài toán phân loại nhiều lớp
Ôn tập Softmax - Maximum Likelihood Estimation
Hiệu chỉnh mô hình L1/L2
Các chỉ số đánh giá mô hình
Mạng nơ ron (Neural Network)
Ôn tập Mạng nơ ron lan truyền thuận + Thực hành với Tensorflow
Thuật toán lan truyền ngược
Mạng tích chập - Convolutional neural network
Đọc nghiên cứu và trả lời câu hỏi
ResNet và InceptionNet
Ôn tập đọc nghiên cứu + đề thi Tensorflow 03
Đọc nghiên cứu và trả lời câu hỏi
Xử lý ngôn ngữ tự nhiên - Word2Vec
Các thuật toán Training
Mô hình ngôn ngữ + RNN
Deep RNN
Ôn tập LSTM + Kỹ thuật training
Timeseries cơ bản
Timeseries trong thực tế
Luyện thi chứng chỉ Tensorflow
Cùng nhau làm Project
Mô hình hồi quy tuyến tính
- Giới thiệu bài toán Grab
- Quá trình xây dựng một mô hình
- Mô hình hồi quy tuyến tính
- Thuật toán Gradient Descent
- Lập trình hồi quy tuyến tính một biến
1. Giới thiệu bài toán Grab
1.1. 3.1. Bài toán Grab.mp4
2. Quá trình xây dựng một mô hình
2.1. 3.2.1. Quá trình xây dựng mô hình.mp4
3. Mô hình hồi quy tuyến tính
3.1. [TF] 3.3.1. Hiển thị dữ liệu và lựa chọn mô hình.mp4
3.2. [TF] 3.3.2. Hàm giả thiết.mp4
3.3. [TF] 3.3.3. Quá trình training.mp4
3.4. [TF] 3.3.4. Cực tiểu hàm mất mát.mp4
4. Thuật toán Gradient Descent
4.1. [TF] 3.4.1 Ý tưởng Gradient Descent.mp4
4.2. [TF] 3.4.2. Chứng minh Gradient Descent.mp4
4.3. [TF] 3.4.3. Tốc độ học.mp4
4.4. [TF] 3.4.4. Tính đạo hàm Gradient Descent.mp4
4.5. Đạo hàm của hàm mất mát với theta 0
Click to view more
5. Lập trình hồi quy tuyến tính một biến
5.1. [TF] 3.5.1. Chuẩn bị lập trình hồi quy tuyến tính.mp4
5.2. [TF] 3.5.2. Công thức này là công thức gì?
Click to view more
5.3. [TF] 3.5.3. Lập trình hàm mất mát
Click to view more
5.4. [TF] 3.5.4. Lập trình tính Gradient và training.mp4
6. Normal Equation
6.1. [TF] 3.6.1. Normal Equation.mp4
7. So sánh MSE và MAE
7.1. [TF] 3.7.1. MSE vs MAE.mp4
8. Slide bài giảng
8.1. 5. Linear Regression.pdf
1. Giới thiệu bài toán Grab
1.1. 3.1. Bài toán Grab.mp4
2. Quá trình xây dựng một mô hình
2.1. 3.2.1. Quá trình xây dựng mô hình.mp4
3. Mô hình hồi quy tuyến tính
3.1. [TF] 3.3.1. Hiển thị dữ liệu và lựa chọn mô hình.mp4
3.2. [TF] 3.3.2. Hàm giả thiết.mp4
3.3. [TF] 3.3.3. Quá trình training.mp4
3.4. [TF] 3.3.4. Cực tiểu hàm mất mát.mp4
4. Thuật toán Gradient Descent
4.1. [TF] 3.4.1 Ý tưởng Gradient Descent.mp4
4.2. [TF] 3.4.2. Chứng minh Gradient Descent.mp4
4.3. [TF] 3.4.3. Tốc độ học.mp4
4.4. [TF] 3.4.4. Tính đạo hàm Gradient Descent.mp4
4.5. Đạo hàm của hàm mất mát với theta 0
5. Lập trình hồi quy tuyến tính một biến
5.1. [TF] 3.5.1. Chuẩn bị lập trình hồi quy tuyến tính.mp4
5.2. [TF] 3.5.2. Công thức này là công thức gì?
5.3. [TF] 3.5.3. Lập trình hàm mất mát
5.4. [TF] 3.5.4. Lập trình tính Gradient và training.mp4
6. Normal Equation
6.1. [TF] 3.6.1. Normal Equation.mp4
7. So sánh MSE và MAE
7.1. [TF] 3.7.1. MSE vs MAE.mp4
8. Slide bài giảng
8.1. 5. Linear Regression.pdf