List of topics
Khai giảng
Học máy là gì
Mô hình hồi quy tuyến tính
Mô hình hồi quy tuyến tính với dữ liệu nhiều cột
Chữa bài hồi quy tuyến tính - Hồi quy tuyến tính với Tensorflow
Stochastic Gradient Descent - SGD
Ôn tập SGD + Hiện tượng Overfitting
Sách bổ trợ cho lớp học
Bài toán phân loại nhị phân
Chữa bài mô hình phân loại + Đánh giá chất lượng mô hình
Bài toán phân loại nhiều lớp
Ôn tập Softmax
Mạng nơ ron (Neural Network)
[Zoom 25-8-2023] Ôn tập Mạng nơ ron - Maximum Likelihood Estimation
Thuật toán lan truyền ngược
Mạng tích chập - Convolutional neural network
Transfer Learning và ResNet và InceptionNet
Xử lý ngôn ngữ tự nhiên - Word2Vec
Mô hình ngôn ngữ + RNN
Đọc nghiên cứu và trả lời câu hỏi
Deep RNN
Timeseries cơ bản
Timeseries trong thực tế
Các thuật toán Training
Luyện thi chứng chỉ Tensorflow
Cùng nhau làm Project
Mạng tích chập - Convolutional neural network
Giới thiệu về hình ảnh, cấu trúc của hình ảnh
Giới thiệu về Filter, một số filter cơ bản để xử lý ảnh
Cấu trúc mô hình CNN, các đặc điểm vượt trội so với mạng Neural Network.
1. Ảnh là một hàm
1.1. [TF] 11.1.1. Giới thiệu ảnh.mp4
1.2. [TF] 11.1.2. Phát hiện cạnh.mp4
1.3. [TF] 11.1.3. Dùng đạo hàm để phát hiện cạnh.mp4
1.4. [TF] 11.1.4. Bạn có nhận xét gì về các bộ lọc này?
Click to view more
2. Bộ lọc
2.1. [TF] 11.1.4. Bộ lọc.mp4
2.2. Hướng dẫn lập trình bộ lọc
3. Lớp tích chập
3.1. [TF] 11.2.1. Giới thiệu mạng CNN.mp4
3.2. [TF] 11.2.2. Điểm yếu của mạng nơ ron.mp4
3.3. [TF] 11.2.3. LeNet.mp4
3.4. [TF] 11.2.4. Lớp tích chập.mp4
3.5. [TF] 11.2.5. Công thức lớp tích chập phần 1.mp4
3.6. Tính số lượng filter trong mỗi bộ lọc
Click to view more
3.7. [TF] 11.2.6. Công thức lớp tích chập phần 2.mp4
3.8. [TF] 11.2.7. Tính chất lớp tích chập.mp4
4. Lớp Pooling
4.1. [TF] 11.3.1. Lớp Pooling.mp4
5. Hiển thị Feature Map
5.1. [TF] 13.4.1. Feature Map.mp4
6. Training CNN
6.1. [TF] 13.5.1. Training CNN.mp4
7. Video
7.1. Ảnh + Bộ lọc .mp4
7.2. Thực hành mạng CNN
8. Slide
8.1. Slide CNN
8.2. [Zoom] Ôn tập CNN
1. Ảnh là một hàm
1.1. [TF] 11.1.1. Giới thiệu ảnh.mp4
1.2. [TF] 11.1.2. Phát hiện cạnh.mp4
1.3. [TF] 11.1.3. Dùng đạo hàm để phát hiện cạnh.mp4
1.4. [TF] 11.1.4. Bạn có nhận xét gì về các bộ lọc này?
2. Bộ lọc
2.1. [TF] 11.1.4. Bộ lọc.mp4
2.2. Hướng dẫn lập trình bộ lọc
3. Lớp tích chập
3.1. [TF] 11.2.1. Giới thiệu mạng CNN.mp4
3.2. [TF] 11.2.2. Điểm yếu của mạng nơ ron.mp4
3.3. [TF] 11.2.3. LeNet.mp4
3.4. [TF] 11.2.4. Lớp tích chập.mp4
3.5. [TF] 11.2.5. Công thức lớp tích chập phần 1.mp4
3.6. Tính số lượng filter trong mỗi bộ lọc
3.7. [TF] 11.2.6. Công thức lớp tích chập phần 2.mp4
3.8. [TF] 11.2.7. Tính chất lớp tích chập.mp4
4. Lớp Pooling
4.1. [TF] 11.3.1. Lớp Pooling.mp4
5. Hiển thị Feature Map
5.1. [TF] 13.4.1. Feature Map.mp4
6. Training CNN
6.1. [TF] 13.5.1. Training CNN.mp4
7. Video
7.1. Ảnh + Bộ lọc .mp4
7.2. Thực hành mạng CNN
8. Slide
8.1. Slide CNN
8.2. [Zoom] Ôn tập CNN